A National Institutes of Health (NIH) study reports that a rare genetic disease, while depleting patients of infection-fighting antibodies, may actually protect them from certain severe or recurrent viral infections. Researchers found that HIV and influenza viruses replicate in the cells of people with congenital disorder of glycosylation type IIb (CDG-IIb) at a much lower rate than in healthy donor cells, creating fewer and less infectious viruses. The study, published in The New England Journal of Medicine, was led by Sergio Rosenzweig, M.D., Ph.D., director of the Primary Immune Deficiency (PID) Clinic at the NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

In the study, the researchers diagnosed CDG-IIb in two siblings with severe development issues who were referred to the NIAID PID Clinic though the NIH Undiagnosed Diseases Program. CDG-IIb is extremely rare, with only one other case reported. The genetic defect of the disease disrupts glycosylation, or the process of attaching sugars to proteins. As a result, proteins called gamma globulins, which include infection-fighting antibodies, are unstable and persist at low levels in the patients’ blood

The Large Hadron Collider beauty (LHCb) collaboration today announced results that confirm the existence of exotic hadrons – a type of matter that cannot be classified within the traditional quark model.

Hadrons are subatomic particles that can take part in the strong interaction – the force that binds protons inside the nuclei of atoms. Physicists have theorized since the 1960s, and ample experimental evidence since has confirmed, that hadrons are made up of quarks and antiquarks that determine their properties. A subset of hadrons, called mesons, is formed from quark-antiquark pairs, while the rest – baryons – are made up of three quarks.

But since it was first proposed physicists have found several particles that do not fit into this model of hadron structure. Now the LHCb collaboration has published an unambiguous observation of an exotic particle – the Z(4430) – that does not fit the quark model.

British scientists have for the first time used regenerative medicine to fully restore an organ in a living animal, a discovery they say may pave the way for similar techniques to be used in humans in future.

The University of Edinburgh team rebuilt the thymus - an organ central to the immune system and found in front of the heart - of very old mice by reactivating a natural mechanism that gets shut down with age.

The regenerated thymus was not only similar in structure and genetic detail to one in a young mouse, the scientists said, but was also able to function again, with the treated mice beginning to make more T-cells - a type of white blood cell key to fighting infections.

The regenerated thymus was also more than twice the size of the aged organs in the untreated mice.

After you’ve injured your spinal cord, getting a “motor complete” diagnosis means you’re unable to move your legs—or anything on your body, below the injury—under your own volition. Stay “motor complete” for two years and the evidence says you’ll never move those areas on your own again. But the prognosis is now a bit different for four hardworking, young(ish) men.

In a new study, researchers treated four men with spinal cord injuries with a combination of mild electrical stimulation to the spine and intense physical therapy. The men regained the ability to move their legs, knees, ankles and toes after being paralyzed for two years or more.

The study follows a 2011 announcement that the same regimen worked for one man, Rob Summers. Over time, Summers was able to stand for a few minutes without help. He could also take steps on a treadmill, with help bearing some of his body weight and keeping him balanced. The new guys’ success shows Summers was not an unusual or lucky case. Perhaps this treatment could help others in the future, although there’s a lot of development that has to happen before something like this becomes widespread.

NASA’s Cassini spacecraft and Deep Space Network have uncovered evidence Saturn’s moon Enceladus harbors a large underground ocean of liquid water, furthering scientific interest in the moon as a potential home to extraterrestrial microbes.

Researchers theorized the presence of an interior reservoir of water in 2005 when Cassini discovered water vapor and ice spewing from vents near the moon’s south pole. The new data provide the first geophysical measurements of the internal structure of Enceladus, consistent with the existence of a hidden ocean inside the moon. Findings from the gravity measurements are in the Friday April 4 edition of the journal Science.

"The way we deduce gravity variations is a concept in physics called the Doppler Effect, the same principle used with a speed-measuring radar gun," said Sami Asmar of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., a coauthor of the paper. "As the spacecraft flies by Enceladus, its velocity is perturbed by an amount that depends on variations in the gravity field that we’re trying to measure. We see the change in velocity as a change in radio frequency, received at our ground stations here all the way across the solar system."

Scientists have successfully reversed the aging process in mice according to a new study just released. Human trials are to begin next, possibly before the year is over. The study was published in the peer reviewed science journal Cell after researchers from both the U.S and Australia made the breakthrough discovery. Lead researcher David Sinclair of the University of New South Wales says he is hopeful that the outcome can be reproduced in human trials. A successful result in people would mean not just a slowing down of aging but a measurable reversal.

The study showed that after administering a certain compound to the mice, muscle degeneration and diseases caused by aging were reversed.

Colon cancer screening is crucial because it can prevent colon-related cancer deaths by as much as 60 percent if adults who are at least 50-years old get screened routinely. What stops many people from getting screened though is the discomfort associated with traditional screening methods.

The number of adults getting screened for colon cancer, however, may soon increase as the U.S Food and Drug Administration (FDA) is likely to give its approval to a less invasive stool-based DNA test for detecting colon cancer.

On Thursday, a panel of FDA advisers unanimously recommended the approval of Cologuard, a colon cancer screening test that analyzes DNA found in the stool. The FDA may not follow the panel’s recommendation but it usually does. Cologuard was developed by Madison-based Exact Sciences which specializes in colon cancer.

An international team of scientists has built a modified yeast chromosome from scratch, the latest step in the quest to make the world’s first synthetic yeast genome, an advance that would lead to new strains of the organism to help produce industrial chemicals, medicines and biofuels.

Instead of just copying nature, the team did extensive tinkering with their chromosome, deleting unwanted genes here and there. It then successfully incorporated the designer chromosome into living yeast cells, endowing them with new capabilities not found in naturally occurring yeast.

"It is the most extensively altered chromosome ever built," said Jef Boeke of New York University’s Langone Medical Center, who led the effort. The findings were published on Thursday in an online edition of the journal Science.